Phosferrox

Other acronyms used for these ligands include FOXAP, FcPHOX and DIPOF. First reported by Richards and Uemura, the synthesis of these ligands was improved by utilisation of the highly diastereoselective lithiation conditions reported by Sammakia. The following lists reactions, organised by metal (Pd  Ru  Ir  Cu  Ag  Ni), for which the application of these ligands has resulted in >80% ee. ACE = Asymmetric Catalytic Efficiency. Update July 2016.

Phosferrox

Palladium

Pd – Heck TL99-40-9163TL00-41-2261JMCA03-196-65.

PN-L1a_b_Heck_2

 

Pd – Alkylative ring opening JACS00-122-1804. OL00-2-1971. OL02-4-1879.

PN-L1a_b_Alkylative-ring-op

 

Pd – Allylic amination OBC13-11-7412.

PN-L1a_b_Allylic-amination_1

JOC02-67-4684.

PN-L1a_b_Allylic-amination_B

 

Pd – Allylic alkylation BCKS97-18-789. TA97-8-1179.

PN-L1a_b_Allylic-alkylation

 GC02-4-103. This reaction with (S,Sp)-PN-L1a in ionic liquid [bmim][PF6] (up to 86% ee)

JOC02-67-4684.

PN-L1a_b_Allylic-alkylation

OBC03-1-145.

PN-L1a_b_Allylic-amination_C

Tet09-65-512

PN-L1a_b_Allylic-alkylation_D

Ruthenium

Ru – Transfer hydrogenation OL97-62-6104

PN-L1a_b_Transfer_hydrogena

CJC98-16-117

PN-L1a_b_Transfer_hydrog_B

Similar results from in situ generated catalyst also reported in JOMC99-572-163. This paper also describes the preparation of [(S,Sp)-PN-L1a]RuCl2(PPh3). An octahedral adduct derived from this, [(S,Sp)-PN-L1a]RuCl2P(OMe3)2, has also been applied to transfer hydrogenation (94% ee, 96% conversion from PhCOMe, ACE = 71.8), see: JOMC08-693-2535.

Iridium

Ir – Hydrogenation ASC04-346-909

Ir_hydrogenation_1

TA07-18-629 The catalyst in this example is the isolated adduct derived from  (S,Sp)-PN-L1b, [Ir(COD)Cl]2 and NaBArF.

PN-L1a_b_Ir_Hydrogenation_A

 

Ir – Hydrosilylation Orgmet99-18-2271

PN-L1a_b_Ir_Hydrosilylation

Copper

Cu – Conjugate addition Tet97-53-16503

PN-L1a_b_Cu_conjugate-addit

OL10-12-1080 See corrigendum for correct assignment of absolute configuration.

PN-L1a_b_Cu_conjugate addition B

CJC10-28-1761 With the 3,5-(CF3)2C6H3 analogue of (S,Sp)-PN-L1a 8 : 1  anti : syn diastereoselectivity resulted.

PN-L1a_b_Cu_conjugate addition C

Angew11-50-12335

PN-L1a_b_Cu_conjugate-addition D

CEJ15-21-19048

PN-L1a_b_Cu_CEJ15-21-19048

Lower anti:syn selectivity with R1 = o-Ar, t-Bu and CH2OBn. High syn selectivity with all R1 substituents achieved using a 2,3-dihydroimidazo[1,2-a]pyridine-OH (i.e. an N,O-ligand) under the same conditions at RT.

CC13-49-5292 

PN-L1a_b_Cu_conjugate-addition E

 

Cu – Conjugate addition-elimination OL09-11-2073

PN-L1a_b_Cu_addition_elimination

 

Cu – Mannich reaction JACS08-130-14362

PN-L1a_b_Cu_JACS08-130-14362

Higher anti selectivity with 4-MeOC6Hanalogue of (S,Sp)-PN-L1a. Reaction syn selective with the 3,5-(CF3)2C6H3 analogue of (S,Sp)-PN-L1a. In both cases ees generally >96%.

 

Cu – 3 + 2 cycloaddition Angew06-45-1979

PN-L1a_b_Cu_3+2

With the 3,5-(CF3)2C6H3 analogue of (S,Sp)-PN-L1a these reactions are endo selective.

OL16-18-820

PN-L1a_b_Cu_OL16-18-820_1

Reaction further exemplified with the (R,R,Rp)-phosferrox ligand derived from (R,R)-2-amino-1,2-diphenylethanol.

 

Cu – 4 + 2 cycloaddition Angew14-53-4680

PN-L1a_b_Cu_Angew14-53-4680

CC15-51-15374 

PN-L1a_b_Cu_4+2_B

 

Cu – 3 + 3 cycloaddition Angew13-52-12377

PN-L1a_b_Cu_Angew13-52-12377

OL15-17-26

PN-L1a_b_Cu_OL15-17-26_1

 

Cu – 3 + 6 cycloaddition OL15-17-1365

PN-L1a_b_Cu_OL15-17-1365

With N-methyl-1-[2-(diphenylphosphino)ferrocenyl]ethylamine >20:1 exo:endo was achieved (ee >95%).

 

Cu – Hydroboration OL14-16-1426

PN-L1a_b_Cu_Hydroboration

 

Cu – Sulfonylindole substitution (via in situ vinylogous imine) OL10-12-1688

PN-L1a_b_Cu_OL10-12-1688

High anti selectivity and ee achieved with a complex obtained from AgCl/phosphoramidite.

Silver

Ag – 3 + 2 cycloaddition OL05-7-5055

PN-L1a_b_Ag_05-7-5055

With the p-CF3C6H4 (instead of Ph) and benzyl (instead of i-Pr/t-Bu) analogue of (S,Sp)-PN-L1a/b these reaction result in >93% ee with a variety of aryl substituents (i.e. instead of p-ClC6H4).

OL15-17-5088

PN-L1a_b_OL15-17-5088

CC16-52-9458

PN-L1a_b_Ag_CC16-in-press

The description of the catalyst loading and reactions conditions employed differ in the manuscript and SI. SI conditions used in the above scheme. High exo selectivity (>20:1) and ee (82-93%) achieved with a phosphoramidite ligand (this S,R,R ligand will result in the enantiomeric series of products).

Nickel

Ni – Allylic alkylation Perkin100-2725

PN-L1a_b_Ni_Perkin100-2725

 

Ni – 2 + 2 + 2 cycloaddition JACS10-132-15836

PN-L1a_b_Ni_JACS10-132-15836

 

Ni – Denitrogenative annulation JACS10-132-54

PN-L1a_b_Ni_JACS10-132-54

Absolute configuration not stated, but may be tentatively  assigned as R by comparison to JACS10-132-15836.

Angew10-49-4955

PN-L1a_b_Ni_Angew10-49-4955

Absolute configuration not stated, but may be tentatively  assigned as S by comparison to JACS10-132-15836. Reaction further exemplified using QUINAP.

 

Ni – Decarbonylative annulation OL11-13-1374

PN-L1a_b_Ni_OL11-13-1374_1

Absolute configuration not stated, but in all cases may be tentatively  assigned as R by comparison to JACS10-132-15836.

 

Ni – Intramolecular alkene arylcyanation Synlett10-1709

PN-L1a_b_Ni_Synlett10-1709

Specific example JACS08-130-12874

PN-L1a_b_Ni_JACS08-130-12874